Modules whose direct summands are FI-extending
Authors
Abstract:
A module $M$ is called FI-extending if every fully invariant submodule of $M$ is essential in a direct summand of $M$. It is not known whether a direct summand of an FI-extending module is also FI-extending. In this study, it is given some answers to the question that under what conditions a direct summand of an FI-extending module is an FI-extending module?
similar resources
Direct Summands of Syzygy Modules of the Residue Class Field
Let R be a commutative Noetherian local ring. This paper deals with the problem asking whether R is Gorenstein if the nth syzygy module of the residue class field of R has a non-trivial direct summand of finite Gdimension for some n. It is proved that if n is at most two then it is true, and moreover, the structure of the ring R is determined essentially uniquely.
full textIndecomposable Summands of Foulkes Modules
In this paper we study the modular structure of the permutation module H ) of the symmetric group S2n acting on set partitions of a set of size 2n into n sets each of size 2, defined over a field of odd characteristic p. In particular we characterize the vertices of the indecomposable summands of H ) and fully describe all of its indecomposable summands that lie in blocks of p-weight at most tw...
full textOn finitely generated modules whose first nonzero Fitting ideals are regular
A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of $R^n$ which is generated by columns of a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set. ...
full textValuation domains whose products of free modules are separable
It is proved that if R is a valuation domain with maximal ideal P and if RL is countably generated for each prime ideal L, then R R is separable if and only RJ is maximal, where J = ∩n∈NP . When R is a valuation domain satisfying one of the following two conditions: (1) R is almost maximal and its quotient field Q is countably generated (2) R is archimedean Franzen proved in [2] that R is separ...
full textModules whose hereditary pretorsion classes are closed under products
A module M is called product closed if every hereditary pretorsion class in σ[M ] is closed under products in σ[M ]. Every module which is locally of finite length is product closed and every product closed module is semilocal. LetM ∈ R-Mod be product closed and projective in σ[M ]. It is shown that (1) M is semiartinian; (2) if M is finitely generated then M satisfies the DCC on fully invarian...
full textMy Resources
Journal title
volume 43 issue 7
pages 2227- 2231
publication date 2017-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023